Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111331

RESUMO

Continuous evaluation of the coronavirus disease 2019 (COVID-19) vaccine effectiveness in hemodialysis (HD) patients is critical in this immunocompromised patient group with higher mortality rates due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. The response towards vaccination in HD patients has been studied weeks after their first and second SARS-CoV-2 vaccination dose administration, but no further studies have been developed in a long-term manner, especially including both the humoral and cellular immune response. Longitudinal studies that monitor the immune response to COVID-19 vaccination in individuals undergoing HD are therefore necessary to prioritize vaccination strategies and minimize the pathogenic effects of SARS-CoV-2 in this high-risk group of patients. We followed up HD patients and healthy volunteers (HV) and monitored their humoral and cellular immune response three months after the second (V2+3M) and after the third vaccination dose (V3+3M), taking into consideration previous COVID-19 infections. Our cellular immunity results show that, while HD patients and HV individuals secrete comparable levels of IFN-γ and IL-2 in ex vivo stimulated whole blood at V2+3M in both naïve and COVID-19-recovered individuals, HD patients secrete higher levels of IFN-γ and IL-2 than HV at V3+3M. This is mainly due to a decay in the cellular immune response in HV individuals after the third dose. In contrast, our humoral immunity results show similar IgG binding antibody units (BAU) between HD patients and HV individuals at V3+3M, independently of their previous infection status. Overall, our results indicate that HD patients maintain strong cellular and humoral immune responses after repeated 1273-mRNA SARS-CoV-2 vaccinations over time. The data also highlights significant differences between cellular and humoral immunity after SARS-CoV-2 vaccination, which emphasizes the importance of monitoring both arms of the immune response in the immunocompromised population.

2.
Front Immunol ; 13: 845882, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401504

RESUMO

Long-term hemodialysis (HD) patients are considered vulnerable and at high-risk of developing severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection due to their immunocompromised condition. Since COVID-19 associated mortality rates are higher in HD patients, vaccination is critical to protect them. The response towards vaccination against COVID-19 in HD patients is still uncertain and, in particular the cellular immune response is not fully understood. We monitored the humoral and cellular immune responses by analysis of the serological responses and Spike-specific cellular immunity in COVID-19-recovered and naïve HD patients in a longitudinal study shortly after vaccination to determine the protective effects of 1273-mRNA vaccination against SARS-CoV-2 in these high-risk patients. In naïve HD patients, the cellular immune response measured by IL-2 and IFN-É£ secretion needed a second vaccine dose to significantly increase, with a similar pattern for the humoral response. In contrast, COVID-19 recovered HD patients developed a potent and rapid cellular and humoral immune response after the first vaccine dose. Interestingly, when comparing COVID-19 recovered healthy volunteers (HV), previously vaccinated with BNT162b2 vaccine to HD patients vaccinated with 1273-mRNA, these exhibited a more robust immune response that is maintained longitudinally. Our results indicate that HD patients develop strong cellular and humoral immune responses to 1273-mRNA vaccination and argue in favor of personalized immune monitoring studies in HD patients, especially if COVID-19 pre-exposed, to adapt COVID-19 vaccination protocols for this immunocompromised population.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Humanos , Imunidade Humoral , Estudos Longitudinais , RNA Mensageiro/genética , Diálise Renal , SARS-CoV-2 , Vacinação/métodos
3.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445401

RESUMO

Class I phosphoinositide 3-kinases (PI3K) are involved in the development of normal and autoimmune responses, including Experimental Autoimmune Encephalomyelitis (EAE), a mouse model for human multiple sclerosis (MS). Here, the role of the ubiquitously expressed class IA PI3K p110α catalytic subunits in EAE has been analyzed using a model of Cre/flox mediated T cell specific deletion of p110α catalytic chain (p110αΔT). Comparison of two month-old (young) and six month-old (mature) p110αΔT mice and their wild type (WT) counterparts indicated loss of spleen CD4+ T cells that increased with age, indicating a role of p110α in their homeostasis. In contrast, CD4+ T regulatory (Treg) cells were enhanced in mature p110αΔT mice when compared to WT mice. Since Myelin Oligodendrocyte Glycoprotein (MOG) peptide-induced EAE is dependent on, or mediated by CD4+ T cells and CD4+ T cell-derived cytokines and controlled by Treg cells, development of EAE in young and mature WT or p110αΔT mice was analyzed. EAE clinical symptoms and disease scores in six month p110αΔT mice were significantly lower than those of mature WT, or young WT and p110αΔT mice. Furthermore, ex vivo antigen activation of lymph node cells from MOG immunized mature p110αΔT mice induced significantly lower levels of IFN-γ and IL-17A than young p110αΔT or young and mature WT mice. Other cytokines including IL-2, IL-10 or TNF-α showed no significant differences between p110αΔT and WT mature mice. Our data show a lower incidence of MOG-induced EAE in mature p110αΔT mice linked to altered T cell homeostasis and lower secretion of inflammatory cytokines.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Encefalomielite Autoimune Experimental/imunologia , Deleção de Genes , Animais , Encefalomielite Autoimune Experimental/genética , Homeostase , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/metabolismo
4.
Cell Rep ; 36(8): 109570, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34390647

RESUMO

The rapid development of mRNA-based vaccines against the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to the design of accelerated vaccination schedules that have been extremely effective in naive individuals. While a two-dose immunization regimen with the BNT162b2 vaccine has been demonstrated to provide a 95% efficacy in naive individuals, the effects of the second vaccine dose in individuals who have previously recovered from natural SARS-CoV-2 infection has not been investigated in detail. In this study, we characterize SARS-CoV-2 spike-specific humoral and cellular immunity in naive and previously infected individuals during and after two doses of BNT162b2 vaccination. Our results demonstrate that, while the second dose increases both the humoral and cellular immunity in naive individuals, COVID-19 recovered individuals reach their peak of immunity after the first dose. These results suggests that a second dose, according to the current standard regimen of vaccination, may be not necessary in individuals previously infected with SARS-CoV-2.


Assuntos
COVID-19/prevenção & controle , Linfócitos T/imunologia , Vacinas Sintéticas/administração & dosagem , Anticorpos Antivirais/sangue , Ligante de CD40/metabolismo , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Humanos , Imunidade Celular , Imunidade Humoral , Imunoglobulina G/sangue , Interferon gama/metabolismo , Interleucina-2/metabolismo , Peptídeos/imunologia , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/imunologia , Linfócitos T/citologia , Linfócitos T/metabolismo , Vacinação , Vacinas Sintéticas/imunologia , Vacinas de mRNA
5.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203838

RESUMO

The phosphatidylinositol 3-kinase (PI3K) family of enzymes plays a determinant role in inflammation and autoimmune responses. However, the implication of the different isoforms of catalytic subunits in these processes is not clear. Rheumatoid arthritis (RA) is a chronic, systemic autoimmune inflammatory disease that entails innate and adaptive immune response elements in which PI3K is a potential hub for immune modulation. In a mouse transgenic model with T-cell-specific deletion of p110α catalytic chain (p110α-/-ΔT), we show the modulation of collagen-induced arthritis (CIA) by this isoform of PI3K. In established arthritis, p110α-/-ΔT mice show decreased prevalence of illness than their control siblings, higher IgG1 titers and lower levels of IL-6 in serum, together with decreased ex vivo Collagen II (CII)-induced proliferation, IL-17A secretion and proportion of naive T cells in the lymph nodes. In a pre-arthritis phase, at 13 days post-Ag, T-cell-specific deletion of p110α chain induced an increased, less pathogenic IgG1/IgG2a antibodies ratio; changes in the fraction of naive and effector CD4+ subpopulations; and an increased number of CXCR5+ T cells in the draining lymph nodes of the p110α-/-ΔT mice. Strikingly, T-cell blasts in vitro obtained from non-immunized p110α-/-ΔT mice showed an increased expression of CXCR5, CD44 and ICOS surface markers and defective ICOS-induced signaling towards Akt phosphorylation. These results, plus the accumulation of cells in the lymph nodes in the early phase of the process, could explain the diminished illness incidence and prevalence in the p110α-/-ΔT mice and suggests a modulation of CIA by the p110α catalytic chain of PI3K, opening new avenues of intervention in T-cell-directed therapies to autoimmune diseases.


Assuntos
Artrite Experimental/enzimologia , Artrite Experimental/patologia , Domínio Catalítico , Classe Ia de Fosfatidilinositol 3-Quinase/química , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Linfócitos T/enzimologia , Animais , Anticorpos/sangue , Artrite Experimental/sangue , Artrite Experimental/imunologia , Biomarcadores/metabolismo , Proliferação de Células , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Modelos Animais de Doenças , Deleção de Genes , Imunidade , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Interleucina-6/sangue , Linfonodos/patologia , Camundongos Endogâmicos C57BL , Transdução de Sinais
6.
J Leukoc Biol ; 110(5): 867-884, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33527556

RESUMO

The interaction between the T-lymphocyte costimulatory molecule ICOS and its ligand (ICOS-L) is needed for efficient immune responses, but expression levels are tightly controlled, as altered expression of ICOS or ICOS-L may lead to immunodeficiency, or favor autoimmune diseases and tumor growth. Using cells of mouse B cell lymphoma (M12.C3) and melanoma (B16), or hamster CHO cells transfected with various forms of mouse ICOS-L, and ICOS+ T cell lines, we show that, within minutes, ICOS induces significant downmodulation of surface ICOS-L that is largely mediated by endocytosis and trans-endocytosis. So, after interaction with ICOS+ cells, ICOS-L was found inside permeabilized cells, or in cell lysates, with significant transfer of ICOS from ICOS+ T cells to ICOS-L-expressing cells, and simultaneous loss of surface ICOS by the T cells. Data from cells expressing ICOS-L mutants show that conserved, functionally important residues in the cytoplasmic domain of mouse ICOS-L (Arg300 , Ser307 and Tyr308 ), or removal of ICOS-L cytoplasmic tail have minor effect on its internalization. Internalization was dependent on temperature, and was partially dependent on actin polymerization, the GTPase dynamin, protein kinase C, or the integrity of lipid rafts. In fact, a fraction of ICOS-L was detected in lipid rafts. On the other hand, proteinase inhibitors had negligible effects on early modulation of ICOS-L from the cell surface. Our data add a new mechanism of control of ICOS-L expression to the regulation of ICOS-dependent responses.


Assuntos
Endocitose/fisiologia , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Regulação para Baixo , Ativação Linfocitária/imunologia , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Eur J Immunol ; 51(4): 824-834, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33169838

RESUMO

CD28 expression is generally considered to be T lymphocyte specific. We have previously shown CD28 mRNA expression in M-CSF-dependent anti-inflammatory monocyte-derived macrophages (M-MØ), and now demonstrate that CD28 cell surface expression is higher in M-MØ than in GM-CSF-dependent macrophages, and that macrophage CD28 expression is regulated by MAFB and activin A. In vivo, CD28 was found in tumor-associated macrophages and, to a lower extent, in pro-inflammatory synovial fluid macrophages from rheumatoid arthritis patients. Analysis of mouse macrophages confirmed Cd28 expression in bone-marrow derived M-MØ. Indeed, anti-CD28 antibodies triggered ERK1/2 phosphorylation in mouse M-MØ. At the functional level, Cd28KO M-MØ exhibited a significantly higher capacity to activate the OVA-specific proliferation of OT-II CD4+ T cells than WT M-MØ, as well as enhanced LPS-induced IL-6 production. Besides, the Cd28KO M-MØ transcriptome was significantly different from WT M-MØ regarding the expression IFN response, inflammatory response, and TGF-ß signaling related gene sets. Therefore, defective CD28 expression in mouse macrophages associates to changes in gene expression profile, what might contribute to the altered functionality displayed by Cd28KO M-MØ. Thus, CD28 expression appears as a hallmark of anti-inflammatory macrophages and might be a target for immunotherapy.


Assuntos
Antígenos CD28/imunologia , Inflamação/imunologia , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Linfócitos T/imunologia , Ativinas/genética , Ativinas/imunologia , Ativinas/metabolismo , Animais , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Antígenos CD28/genética , Antígenos CD28/metabolismo , Células Cultivadas , Expressão Gênica/imunologia , Perfilação da Expressão Gênica/métodos , Humanos , Inflamação/genética , Inflamação/metabolismo , Ativação Linfocitária/genética , Macrófagos/metabolismo , Fator de Transcrição MafB/genética , Fator de Transcrição MafB/imunologia , Fator de Transcrição MafB/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Linfócitos T/citologia , Linfócitos T/metabolismo
8.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33167415

RESUMO

Mesoporous bioactive glass nanospheres (NanoMBGs) have high potential for clinical applications. However, the impact of these nanoparticles on the immune system needs to be addressed. In this study, the biocompatibility of SiO2-CaO NanoMBGs was evaluated on different mouse immune cells, including spleen cells subsets, bone marrow-derived dendritic cells (BMDCs), or cell lines like SR.D10 Th2 CD4+ lymphocytes and DC2.4 dendritic cells. Flow cytometry and confocal microscopy show that the nanoparticles were rapidly and efficiently taken up in vitro by T and B lymphocytes or by specialized antigen-presenting cells (APCs) like dendritic cells (DCs). Nanoparticles were not cytotoxic and had no effect on cell viability or proliferation under T-cell (anti-CD3) or B cell (LPS) stimuli. Besides, NanoMBGs did not affect the balance of spleen cell subsets, or the production of intracellular or secreted pro- and anti-inflammatory cytokines (TNF-α, IFN-γ, IL-2, IL-6, IL-10) by activated T, B, and dendritic cells (DC), as determined by flow cytometry and ELISA. T cell activation surface markers (CD25, CD69 and Induced Costimulator, ICOS) were not altered by NanoMBGs. Maturation of BMDCs or DC2.4 cells in vitro was not altered by NanoMBGs, as shown by expression of Major Histocompatibility Complex (MHC) and costimulatory molecules (CD40, CD80, CD86), or IL-6 secretion. The effect of wortmannin and chlorpromazine indicate a role for phosphoinositide 3-kinase (PI3K), actin and clathrin-dependent pathways in NanoMBG internalization. We thus demonstrate that these NanoMBGs are both non-toxic and non-inflammagenic for murine lymphoid cells and myeloid DCs despite their efficient intake by the cells.


Assuntos
Compostos de Cálcio/química , Células Dendríticas/efeitos dos fármacos , Teste de Materiais/métodos , Nanosferas/química , Óxidos/química , Dióxido de Silício/química , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/fisiologia , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/imunologia , Feminino , Técnicas Imunológicas , Mediadores da Inflamação/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Porosidade , Baço/citologia
9.
PLoS One ; 14(7): e0219449, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31283790

RESUMO

Signaling through the inducible costimulator ICOS is required for the homeostasis and function of various immune cell populations, with an outstanding role in the generation and maintenance of germinal centers. Very recently, it has been suggested that the clinical phenotype of ICOS-deficient patients is much broader than initially anticipated and the innate immune response might be also affected. However, the role of the ICOS/ICOS-Ligand axis in the homeostasis and development of innate NK cells is not known, and reports on its participation in NK cell activation are scarce. NK cells may express low levels of ICOS that are markedly enhanced upon activation. We show here that ICOS-deficient (ICOS-KO) mice present low NK cell numbers and defects in the homeostasis of these cells, with delayed maturation and altered expression of the developmental NK cell markers CD122, NK1.1, CD11b or CD27. Our experiments in mixed bone marrow chimera mice indicate that, both, cell-intrinsic defects of ICOS-KO NK and deficiencies in the milieu of these mice contribute to the altered phenotype. ICOS-deficient NK cells show impaired production of IFN-γ and cytotoxicity, and a final outcome of defects in NK cell-mediated effector function during the response to poly(I:C) or vaccinia virus infection in vivo. Interestingly, we show that murine innate cells like IL-2-cultured NK and bone marrow-derived dendritic cells can simultaneously express ICOS and ICOS-Ligand; both molecules are functional in NK intracellular signaling, enhancing early phosphorylation of Akt and Erk, or IFN-γ secretion in IL-2-activated NK cells. Our study shows the functional importance of the ICOS/ICOS-L pair in NK cell homeostasis, differentiation and activity and suggests novel therapeutic targets for NK manipulation.


Assuntos
Proteína Coestimuladora de Linfócitos T Induzíveis/genética , Células Matadoras Naturais/metabolismo , Animais , Apoptose , Antígeno CD11b/metabolismo , Diferenciação Celular , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/deficiência , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Interferon gama/metabolismo , Interleucina-2/farmacologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/efeitos dos fármacos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação/efeitos dos fármacos , Poli I-C/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Vaccinia/imunologia , Vaccinia/patologia
10.
Front Immunol ; 9: 332, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29535720

RESUMO

Class IA phosphatidylinositol 3-kinase (PI3K) catalytic subunits p110α and p110δ are targets in cancer therapy expressed at high levels in T lymphocytes. The role of p110δ PI3K in normal or pathological immune responses is well established, yet the importance of p110α subunits in T cell-dependent immune responses is not clear. To address this problem, mice with p110α conditionally deleted in CD4+ and CD8+ T lymphocytes (p110α-/-ΔT) were used. p110α-/-ΔT mice show normal development of T cell subsets, but slightly reduced numbers of CD4+ T cells in the spleen. "In vitro," TCR/CD3 plus CD28 activation of naive CD4+ and CD8+ p110α-/-ΔT T cells showed enhanced effector function, particularly IFN-γ secretion, T-bet induction, and Akt, Erk, or P38 activation. Tfh derived from p110α-/-ΔT cells also have enhanced responses when compared to normal mice, and IL-2 expanded p110α-/-ΔT CD8+ T cells had enhanced levels of LAMP-1 and Granzyme B. By contrast, the expansion of p110α-/-ΔT iTreg cells was diminished. Also, p110α-/-ΔT mice had enhanced anti-keyhole limpet hemocyanin (KLH) IFN-γ, or IL-4 responses and IgG1 and IgG2b anti-KLH antibodies, using CFA or Alum as adjuvant, respectively. When compared to WT mice, p110α-/-ΔT mice inoculated with B16.F10 melanoma showed delayed tumor progression. The percentage of CD8+ T lymphocytes was higher and the percentage of Treg cells lower in the spleen of tumor-bearing p110α-/-ΔT mice. Also, IFN-γ production in tumor antigen-activated spleen cells was enhanced. Thus, PI3K p110α plays a significant role in antigen activation and differentiation of CD4+ and CD8+ T lymphocytes modulating antitumor immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Classe I de Fosfatidilinositol 3-Quinases/imunologia , Imunidade Celular , Sistema de Sinalização das MAP Quinases/imunologia , Neoplasias Experimentais/imunologia , Linfócitos T Reguladores/imunologia , Animais , Linfócitos T CD8-Positivos/patologia , Classe I de Fosfatidilinositol 3-Quinases/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/imunologia , Interferon gama/genética , Interferon gama/imunologia , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/imunologia , Linfócitos T Reguladores/patologia
11.
An. R. Acad. Farm ; 80(1): 91-125, ene.-mar. 2014. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-121838

RESUMO

Las fosfatidilinositol 3-cinasas (PI3K) de clase I dan lugar a fosfolípidos trifosforilados (PtdIns (3,4,5)P3) que son clave en las señales de crecimiento, diferenciación y la supervivencia de las células y son esenciales para el funcionamiento de la inmunidad innata y adaptativa. Los nuevos inhibidores de PI3K generados para el tratamiento de tumores pueden ser útiles en inmunoterapia, especialmente en enfermedades autoinmunes, y ha de investigarse su impacto en la inmunidad anti tumoral. Se revisa el papel de las PI3K de clase I en las respuestas inmunes adaptativas, y los datos conocidos relativos al efecto de inhibidores en respuestas inmunes adaptativas


Class I phosphoinositide-3 kinases (PI3Ks) generate PtdIns (3,4,5)P3 to activate cell signaling cascades essential to cell growth, differentiation and survival, and are essential to the function of innate and adaptive immunity. The generation of a vast array of newly developed PI3K inhibitors to treat cancer poses the question of their use in the modulation of pathological immune reactions like autoimmune diseases, or the effect of these drugs in the anti-tumor immune reactions. Here, the role of PI3K in adaptive immune reactions and data concerning the use of inhibitors to control immune responses are reviewed


Assuntos
Humanos , Classe I de Fosfatidilinositol 3-Quinases/farmacologia , Doenças do Sistema Imunitário/tratamento farmacológico , Doenças Autoimunes/tratamento farmacológico , Imunidade Adaptativa , Linfócitos T , Monoéster Fosfórico Hidrolases/farmacocinética
12.
J Mater Chem B ; 2(22): 3469-3479, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32261467

RESUMO

The interaction of new nanocomposite mesoporous glass/hydroxyapatite (MGHA) scaffolds with immune cells involved in both innate and acquired immunity has been studied in vitro as an essential aspect of their biocompatibility assessment. Since the immune response can be affected by the degradation products of bioresorbable scaffolds and scaffold surface changes, both processes have been evaluated. No alterations in proliferation and viability of RAW-264.7 macrophage-like cells were detected after culture on MGHA scaffolds which did not induce cell apoptosis. However, a slight cell size decrease and an intracellular calcium content increase were observed after contact of this cell line with MGHA scaffolds or their extracts. Although no changes in the percentages of RAW cells with low and high contents of reactive oxygen species (ROS) are observed by the treatment with 7 day extracts, this study has revealed modifications of these percentages after direct contact with scaffolds and by the treatment with 24 h extracts, related to the high reactivity/bioactivity of this MGHA nanocomposite at initial times. Furthermore, when normal fresh murine spleen cells were used as an experimental model closer to physiological conditions, no significant alterations in the activation of different immune cell subpopulations were detected in the presence of 24 h MGHA extract. MGHA scaffolds did not affect either the spontaneous apoptosis or intracellular cytokine expression (IL-2, IL-10, IFN-γ, and TNF-α) after 24 h treatment. The results obtained in the present study with murine immune cell subpopulations (macrophages, lymphocytes B, lymphocytes T and natural killer cells) support the biocompatibility of the MGHA material and suggest an adequate host tissue response to their scaffolds upon their implantation.

13.
J Leukoc Biol ; 95(3): 441-50, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24212096

RESUMO

Tregs are anergic CD4(+)CD25(+)Foxp3(+) T lymphocytes exerting active suppression to control immune and autoimmune responses. However, the factors in TCR recognition underlying Treg differentiation are unclear. Based on our previous data, we hypothesized that Treg TCR/CD3 antigen receptor complexes might differ from those of CD4(+)CD25(-) Tconv. Expression levels of TCR/CD3, CD3ε,ζ chains, or other molecules involved in antigen signaling and the characteristics of CD3ε chains were analyzed in thymus or spleen Treg cells from normal mice. Tregs had quantitative and qualitatively distinct TCR/CD3 complexes and CD3ε chains. They expressed significantly lower levels of the TCR/CD3 antigen receptor, CD3ε chains, TCR-ζ chain, or the CD4 coreceptor than Tconv. Levels of kinases, adaptor molecules involved in TCR signaling, and early downstream activation pathways were also lower in Tregs than in Tconv. Furthermore, TCR/CD3 complexes in Tregs were enriched in CD3ε chains conserving their N-terminal, negatively charged amino acid residues; this trait is linked to a higher activation threshold. Transfection of mutant CD3ε chains lacking these residues inhibited the differentiation of mature CD4(+)Foxp3(-) T lymphocytes into CD4(+)Foxp3(+) Tregs, and differences in CD3ε chain recognition by antibodies could be used to enrich for Tregs in vivo. Our results show quantitative and qualitative differences in the TCR/CD3 complex, supporting the hyporesponsive phenotype of Tregs concerning TCR/CD3 signals. These differences might reconcile avidity and flexible threshold models of Treg differentiation and be used to implement therapeutic approaches involving Treg manipulation.


Assuntos
Complexo CD3/metabolismo , Diferenciação Celular/imunologia , Linfócitos T Reguladores/citologia , Animais , Feminino , Citometria de Fluxo , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores/metabolismo
14.
Inmunología (1987) ; 31(1): 4-12, ene.-mar. 2012. ilus
Artigo em Inglês | IBECS | ID: ibc-108929

RESUMO

T lymphocyte antigen activation is facilitated by clustering of membrane glycosphingolipidenriched microdomains (GEMs, lipid "rafts") at the T cell/APC contact that is linked to changes in actin cytoskeleton and is one major mechanism of CD28 costimulation. Ligation of CD28 alone, or ligation of the CD28-like molecules CTLA-4 (CD152) and ICOS (CD278)induces act in polymerization with cell elongation and generation of lamellipodia and filopodia in T cells. These changes are dependent on Src, PI3-kinase, Vav, and Rho family GTPases. Whereas CD28 and CTLA-4 have been shown to be functional and physically associated with lipid rafts, the presence of ICOS in lipid rafts or its effect in raft clustering is not known. In this work, we have activated the T cell line D10 with anti-ICOS antibodies, alone or combined with anti-CD3 antibodies, bound or unbound to polystyrene microbeads or glass coverslips. The possible relationship of ICOS-induced changes in actin cytoskeleton to the ICOS localization in membrane rafts was then analyzed by fluorescence microscopy, or by immunoblot of detergent insoluble ("raft") or soluble ("non-raft") fractions of cell lysates. Our data show that ICOS promotes TCR/CD3 induction of raft clustering at the site of activation. However, ICOS, which, on its own, can induce accumulations of polymerized actin, is undetectable in membrane rafts, even when using CD3 or ICOS, ligands capable of inducing clear changes in the actin cytoskeleton (AU)


La activación de linfocitos T se facilita por la concentración, en el sitio de interacción con elligando, de microdominios de membrana enriquecidos en glicoesfingolípidos (GEM, o "balsas" lipídicas). Este fenómeno está unido a, y es dependiente de cambios en el citoesqueleto de actina, siendo uno de los principales mecanismos implicados en la coestimulación porCD28. El entrecruzamiento de CD28 aisladamente, o de moléculas de su familia como CTLA-4 (CD152) e ICOS (CD278) inducen en linfocitos T polimerización de actina acompañada de elongación celular y aparición de lamelipodia y filopodia. Estos cambios son dependientes de Src, PI3-cinasa, Vav, y GTPasas de la familia Rho. Se han descrito relaciones funcionales y físicas de CD28 y CTLA-4 con balsas lipídicas, pero se desconoce si ICOS se encuentra en estos dominios, o su efecto sobre la agrupación de balsas inducida porligandos. En este trabajo se han activado células T de la línea D10 con anticuerpos anti-ICOS, solos o combinados con anticuerpos anti-CD3, y unidos o no a microesferas de poliestireno oa cubreobjetos de vidrio. En estas células se ha determinado la posible relación entre los cambios en el citoesqueleto de actina y la localización de ICOS en las balsas lipídicasmediante microscopía de fluorescencia, o mediante "inmunoblot" de las fracciones de lisados insolubles ("balsas") o solubles ("no-balsas") en detergente. Nuestros datos muestran que ICOS incrementa el agrupamiento de balsas lipídicas inducida por anticuerpo antiCD3 en el sitio de contacto con el estímulo. Sin embargo, ICOS, que por sí solo induce acumulación d actina polimerizada, es indetectable en las balsas de membrana, incluso empleando ligandos (CD3 o ICOS) capaces de inducir cambios claros en el citoesqueleto deactina (AU)


Assuntos
Humanos , Citoesqueleto de Actina/imunologia , Antígenos CD28/imunologia , Polimerização
15.
Arthritis Rheum ; 63(6): 1562-72, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21380996

RESUMO

OBJECTIVE: To investigate the costimulatory role of Crry/p65 (Crry), a membrane complement regulatory protein, on the expansion and function of natural Treg cells and their ability to ameliorate proteoglycan-induced arthritis (PGIA), an animal model of inflammatory arthritis in which the role of natural Treg cells is not well established. METHODS: CD4+CD25+ natural Treg cells from BALB/c mice were activated in vitro and costimulated by Crry. The expanded cells were phenotypically characterized, and their suppressive effect on T cell proliferation was assayed in vitro. The potential prophylactic and therapeutic effects of this population versus those of natural Treg cells in PGIA were studied. The clinical score, histology, the antigen-specific isotype antibody pattern, in vitro T cell responses, and the presence of Treg cells in the paws were studied. RESULTS: Crry costimulation enhanced the in vitro expansion of natural Treg cells while maintaining their phenotypic and suppressive properties. Crry-expanded Treg cells had stronger suppressive properties in vivo and a longer ameliorating effect in the PGIA model than did natural Treg cells. Crry-expanded Treg cells suppressed T cell- and B cell-dependent responses in PGIA, changing the pathogenic antibody isotype pattern and decreasing antigen-dependent secretion of cytokines, including interferon-γ, interleukin-12 (IL-12), and IL-17. Increased FoxP3 expression was detected in the paws of mice transferred with Crry-expanded Treg cells. CONCLUSION: Crry-mediated costimulation facilitates in vitro expansion of natural Treg cells while maintaining their suppressive properties in vitro and in vivo in the PGIA model. These results highlight the potential of the complement regulatory protein Crry to costimulate and expand natural Treg cells capable of suppressing disease in an animal model of chronic inflammatory arthritis.


Assuntos
Artrite/imunologia , Receptores de Complemento/imunologia , Linfócitos T Reguladores/imunologia , Animais , Artrite/induzido quimicamente , Linfócitos B/imunologia , Citocinas/metabolismo , Feminino , Fatores de Transcrição Forkhead/biossíntese , Subunidade alfa de Receptor de Interleucina-2/imunologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Proteoglicanas/efeitos adversos , Receptores de Complemento 3b
16.
Cell Mol Life Sci ; 68(18): 3065-79, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21188463

RESUMO

To better understand T lymphocyte costimulation by inducible costimulator (ICOS; H4; CD278), we analyzed proteins binding to ICOS peptides phosphorylated at the Y(191)MFM motif. Phosphorylated ICOS binds class IA phosphatidyl inositol 3-kinase (PI3-K) p85α, p50-55α and p85ß regulatory subunits and p110α, p110δ and p110ß catalytic subunits. Intriguingly, T cells expressed high levels of both p110α or p110δ catalytic subunits, yet ICOS peptides, cell surface ICOS or PI3-kinase class IA regulatory subunits preferentially coprecipitated p110α catalytic subunits. Silencing p110α or p110δ partially inhibited Akt/PKB activation induced by anti-CD3 plus anti-ICOS antibodies. However, silencing p110α enhanced and silencing p110δ inhibited Erk activation. Both p110α- and p110δ-specific inhibitors blocked cytokine secretion induced by TCR/CD3 activation with or without ICOS costimulus, but only p110α inhibitors blocked ICOS-induced cell elongation. Thus, p110α and p110δ are essential to optimal T cell activation, but their abundance and activity differentially tune up distinct ICOS signaling pathways.


Assuntos
Antígenos de Diferenciação de Linfócitos T/metabolismo , Ativação Linfocitária/fisiologia , Fosfatidilinositol 3-Quinase/metabolismo , Ligação Proteica , Subunidades Proteicas/metabolismo , Transdução de Sinais/fisiologia , Linfócitos T/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Diferenciação de Linfócitos T/genética , Primers do DNA/genética , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Immunoblotting , Proteína Coestimuladora de Linfócitos T Induzíveis , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Fosfatidilinositol 3-Quinase/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Curr Pharm Des ; 15(28): 3290-300, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19860678

RESUMO

The success of vaccination is directly or indirectly based on the specificity of antigen recognition by T lymphocytes, their efficient activation and expansion, and the generation of vaccine-specific effectors and memory cells. These traits are largely dependent on the correct assembly and expression of sufficient number of functional TCR/CD3 complexes in the cell surface. In this review, some of the genetic and epigenetic factors that determine the correct assembly and structure of the TCR/CD3 complex are summarized. Those physiologic or pathologic factors leading to natural variations, or pathologic alterations of the standard that might lead to poor response to vaccination and that could give some possibilities to pharmacological intervention are emphasized.


Assuntos
Complexo Receptor-CD3 de Antígeno de Linfócitos T/imunologia , Complexo Receptor-CD3 de Antígeno de Linfócitos T/fisiologia , Vacinas/imunologia , Animais , Expressão Gênica , Humanos , Modelos Moleculares , Complexo Receptor-CD3 de Antígeno de Linfócitos T/química , Complexo Receptor-CD3 de Antígeno de Linfócitos T/genética , Transdução de Sinais/imunologia , Transdução de Sinais/fisiologia , Resultado do Tratamento , Vacinação
18.
Immunol Lett ; 126(1-2): 8-15, 2009 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-19616027

RESUMO

CD3varepsilon chains are essential to the structure, expression and signaling of T cell receptors. Here, we extend to human CD3varepsilon our previous data in mouse CD3varepsilon showing that, in T cells, proteolytic processing of the acidic N-terminal sequence of CD3varepsilon chains generate distinct polypeptide species that can be identified by two-dimension (IEF-SDS PAGE) electrophoresis and immunoblot. This was shown first by showing the processing of a fusion protein of GFP and the extracellular domain of mouse CD3varepsilon (mCD3GFP) expressed in Jurkat cells. Secondly, pI heterogeneity was also found in human CD3varepsilon chains immunoprecipitated from the surface of Jurkat cells or PHA blasts of human blood T lymphocytes. Comparison of CD3varepsilon chains from 27 different species shows that their N-terminal sequences share a strong acidic nature, despite the large differences in terms of length and composition, even among closely related species. Our results suggest that generation of CD3varepsilon chain isoforms with different N-terminal sequence and pI is a general phenomenon. Thus, as previously observed in the mouse, the relative abundance of CD3varepsilon chain species might regulate TCR/CD3 structure and function, including the strength of the interactions between CD3 dimers and the TCR clonotypic receptors, as well as TCR/CD3 activation thresholds. Interestingly, CD3varepsilon chains from 7 out of 27 species studied have putative N-glycosylation (NxS or NxT) motifs in their Ig extracellular domain. Their location, plus the conservation of residues involved in domain organization, the interactions with other CD3 chains, or the TCR, and signal triggering add new data useful to establish a permissive topology for the interaction between CD3 dimers and the TCR chains.


Assuntos
Motivos de Aminoácidos , Complexo CD3/química , Linfócitos T/metabolismo , Sequência de Aminoácidos , Animais , Complexo CD3/genética , Complexo CD3/metabolismo , Sequência Conservada/genética , Eletroforese em Gel Bidimensional , Glicosilação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Ponto Isoelétrico , Células Jurkat , Camundongos , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Linfócitos T/citologia , Transfecção
19.
Adv Exp Med Biol ; 640: 1-11, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19065779

RESUMO

The T-cell antigen receptor complex (TCR/CD3) is a cell surface structure that defines the T lymphocyte lineage, where it fulfills two basic functions, namely antigen recognition and triggering of signals needed to mount adequate responses to foreign aggression and/or to undergo differentiation. Knowing the precise structure of the complex in terms of its components and their relative arrangement and interactions before and after antigen recognition is essential to understand how ligand binding transforms into functionally relevant T-cell responses. These include not only full responses to foreign peptide antigens by mature T-cells, but also other phenomena like modulation ofT-cell activation with altered peptide ligands, positive and negative selection ofthymocytes, alloreactivity and autoimmune reactions. A wealth of new data has accumulated in recent years on the structure of TCR/antigen complexes and CD3 polypeptides and on the stoichiometry of the TCR/CD3 complex and intersubunit interactions. In this review, we discuss how these data fit into a meaningful model of the TCR/CD3 function.


Assuntos
Receptores de Antígenos de Linfócitos T/imunologia , Animais , Antígenos CD4/imunologia , Antígenos CD8/imunologia , Humanos , Complexo Receptor-CD3 de Antígeno de Linfócitos T/química , Complexo Receptor-CD3 de Antígeno de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/química
20.
Int Immunol ; 20(4): 577-89, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18310064

RESUMO

The inducible co-stimulator (ICOS, CD278) is essential to the efficient development of normal and pathological immune reactions. Since ICOS-deficient mice have enhanced susceptibility to experimental allergic encephalomyelitis (EAE), we have functionally analyzed a CD4+ICOS+ population comprising 6-15% of all CD4+ T cells in secondary lymphoid organs of unmanipulated wild-type mice and checked for their ability to suppress EAE. In C57BL/6 mice, CD4+ICOS+ cells were a major source of cytokines including IFN-gamma, IL-2, IL-4, IL-10 or IL-17A. Upon activation, these cells showed preferentially enhanced production of IL-4 or IL-10 but inhibited IFN-gamma production. In contrast, CD4+ICOS- cells mainly produced IFN-gamma. Interestingly, CD4+ICOS+ cells partially suppressed the proliferation of CD4+ICOS- or CD4+CD25- lymphocytes 'in vitro' by an IL-10-dependent mechanism. Furthermore, CD4+ICOS+ activated and expanded under appropriate conditions yielded a population enriched in cells producing IL-10 and T(h)2 cytokines that also suppressed the proliferation of CD4+CD25- lymphocytes. CD4+ICOS+ cells, before or after expansion in vitro, reduced the severity of EAE when transferred to ICOS-deficient mice. In the same EAE model, lymph node cells from ICOS-deficient mice receiving ICOS+ cells showed reduced IL-17A production and enhanced IL-10 secretion upon antigen activation in vitro. Thus, naturally occurring CD4+ICOS+ cells, expanded or not in vitro, are functionally relevant cells able of protecting ICOS-deficient mice from severe EAE.


Assuntos
Antígenos de Diferenciação de Linfócitos T/biossíntese , Linfócitos T CD4-Positivos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Ativação Linfocitária/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Antígenos de Diferenciação de Linfócitos T/genética , Linfócitos T CD4-Positivos/transplante , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/terapia , Proteína Coestimuladora de Linfócitos T Induzíveis , Interleucina-10/biossíntese , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...